
Neurocomputing 42 (2002) 197–214
www.elsevier.com/locate/neucom

Synaptic Darwinism and neocortical function

Paul R. Adams∗, Kingsley J.A. Cox
Department of Neurobiology and Behavior, College of Arts and Sciences, SUNY Stony Brook,

State University NewYork, Stony Brook, NY 11794-5230, USA

Abstract

We propose that certain brain systems, such as those of neocortex, exploit a fusion of
ideas from neural networks and evolutionary computation, and that several previously puz-
zling features of thalamocortical circuitry and physiology can be understood as consequences
of this fusion. The starting point is a consideration of anatomical errors in the recently de-
scribed digital strengthening of synaptic connections, which are analogous to mutations. A
mathematical model of this process shows the equivalence of the intrinsic error rate and a
“correlation ratio” which re4ects the spatial variation in the degree of synchrony of neural
5ring. The correlation ratio plays a similar role to 5tness ratios in genetic algorithms. It is
argued that a major trend in brain evolution has been decreases in the intrinsic error rate,
allowing increases in circuit complexity, but that biophysical limits to this trend have forced
the neocortex to adopt a virtual error-reduction strategy. This requires online measurement
of correlation ratios and control of the plasticity of the connections formed by individual
neurons. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we propose that brains employ a novel fusion of ideas from evolu-
tionary computing and neural networks, and suggest that some of the most charac-
teristic features of the neocortex may re4ect this fusion. In evolutionary computing,
variant problem solutions, represented as symbol strings, are created from exist-
ing solutions by string processes such as mutation, recombination, etc. Di<erent
strings self-replicate in competition, and the solution pool gradually improves. In
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neural networks, problem solutions are represented as di<erent sets of synaptic
weights. These weights are adjusted according to local activity, typically according
to some version of the Hebb rule. In conventional hybrids of evolutionary and
neural techniques, general network parameters and=or architecture are set “genet-
ically”, while weights are “learned”. This corresponds to the orthodox view that,
in real brains, genes program synaptic connectivity, while neural activity programs
synaptic weights. In this view, neural networks are con5gured at a coarse level
by extremely slow (thousands or millions of years) biological evolution, and at a
much 5ner level by rapid (milliseconds to seconds) learning. Also according to
this view, most of the solution to the myriad diFcult computational tasks faced
by the neocortex has already been hardwired (by evolution), with learning 5ll-
ing in the detail. We argue that learning may involve not just weight adjustment,
but also microscopic adjustments in connectional architecture—essentially synaptic
“mutations”—which are inherited in the sense that new connections in turn undergo
a selective strengthening (or weakening) process. We construct a simple model that
shows how the consequences of such synaptic mutations depend critically on the
spatial variation in the signals (primarily, neural activity) that determine synaptic
weights. This relationship may then be exploited by certain hitherto rather enig-
matic cortical circuitry to optimise the balance between learning and innovation.

2. Synaptic mutation

The basic idea can be illustrated using two recent 5ndings on the cell physi-
ology of learning in the rodent hippocampal brain slice preparation [24,13]. Both
groups studied long-term potentiation (ltp) of transmission between CA3 and CA1
pyramidal cell pairs induced by coupled, or correlated, presynaptic and postsy-
naptic stimulation. One group [24] reported that, for pairs coupled by a single
synapse, synaptic strengthening occurred in a stochastic but digital, all-or-none
manner. The increment in strength, if it occurred, was equal to the existing strength.
This 5nding implies that weight adjustment occurs by a process of synaptic repli-
cation (or, in long-term depression, death), the replication probability depending
on the degree of correlation across the existing synapse. Digital weight adjustment
would thus correspond to addition of functional synaptic units, or synapses, mesh-
ing with older evidence for the quantal nature of synaptic transmission. There is
some evidence that functional synapse recruitment might be followed by struc-
tural recruitment—formation of anatomically new synapses [5,7,16,30]. It seems
that functional synapse doubling is followed by an “interphase” in which fur-
ther doubling is not possible until structural reorganisation has occurred [15]. The
other group [13] found that following very strongly correlated 5ring across an
already strong connection (comprised of many synapses), some strengthening of
inactive, but nearby, connections occurred. This lack of complete speci5city of
activity-dependent strengthening is often referred to as “volume learning”. How-
ever, it has not hitherto been noted that, combined with the results on digital ltp,
volume learning implies that new synapses do not always appear at the connection
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across which correlated activity occurs, but can also appear at neighbouring con-
nections. From this viewpoint, volume learning becomes a form of spatial error
of digital strengthening. If these neighbouring connections are merely “potential”
connections, then the synaptic errors would correspond to the formation of new
connections. These new connections would in turn be able to strengthen digitally,
and errors here would produce further shifts in connectivity.
An equivalent but slightly di<erent perspective on this matter is obtained by

contrast with the situation usually assumed in neural network models—complete
connectivity (e.g., from one layer to the next), and continuously adjustable synaptic
weights. In the brain, these weights are comprised of variable numbers of synapses,
and the number of synapses that a neuron can make (or receive) is usually far
fewer than the number of cells in the network. This implies that the network is
very sparsely connected. In the traditional view, decisions about connectivity are
achieved by very slow genetic evolution, but if new connections can be made and
tested “on-line”, much greater 4exibility could be achieved. In principle, a network
that is sparsely connected at any one time but that can systematically explore new
connections is equivalent to a fully connected network in its learning ability. In
practice, however, the synaptic “errors”, or “mutations”, that allow new con5gu-
rations to be tested are indeed “errors”, and will degrade network performance.
At 5rst glance it appears that a fully connected, continuous-weight, network must
always be superior to a sparsely connected mutating network if hardware consider-
ations such as the bulk of synapses and the length of wires are ignored. However,
in a serial implementation the calculational load imposed by the large numbers
of weak connections will always severely limit the feasible network size, so that
even without biological constraints eliminating connections is useful. Our postulate
of synaptic error allows pruned networks to be used for new problems without
beginning from scratch, a hallmark of the neocortex.
How can an optimal balance be set between the good and bad aspects of synaptic

mutation—between 4exibility and the ability to achieve a very precise 5nal set of
weights uncompromised by weight adjustment errors? We do not have a general
analysis of this problem, which clearly depends on the speci5cs of the task at
hand, and especially how fast the problem itself changes. Nevertheless, even in
the absence of such an analysis, we would like to suggest a general solution—
that the larger the network (and the more complicated the task) the smaller the
error rate should be. This suggestion emerges from consideration of the analogous
problem in evolutionary computing procedures—how to set the frequencies of the
variation-inducing genetic operations (mutation, crossover, etc.). This problem has
long been at the centre of biological discussion, dating back to Fisher [14]. A key
insight is Eigen’s celebrated Error Catastrophe [12]. Eigen showed that a “master”
polynucleotide sequence that self-replicates faster than alternative sequences arising
by mutation will only survive if the per-base mutation rate is less than the critical
value ln s=N , where s is a measure of the superiority of the master sequence and N
is the sequence base length. The reason is that the winnowing e<ect of competitive
natural selection, which favours the master sequence, is overwhelmed by copying
errors if the sequence is too long.
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Two further considerations suggest that biological organisms actually operate
close to, rather than merely below, this error threshold. Clearly if the world in
which a polynucleotide sequence evolves is itself changing very rapidly, then the
mutation rate should be as high as is possible without infringing the error criterion.
Also, the world is a very complex place (and in fact is largely constituted by other
evolving organisms), so in general the more complex the genome, the more likely
it is that a competitive edge (high s) can be achieved. Together these considerations
suggest that the central tendency of biological evolution should be reduction in error
rates, since this would allow more complex, precise solutions to complex and only
partially solvable problems. This does indeed seem to be a common leitmotif in
the development of biological information systems (RNA then DNA; proofreading,
repair, etc.). Furthermore, arti5cial life simulations support this hypothesis [2].
We suggest that the same principle can be extended to neural networks, espe-

cially biological realisations thereof. In this view the core of neural programming,
weight adjustment or synaptic learning, cannot be supposed error free, and the
performance of neural networks (or at least those that, like the cortex, learn on-
line in a complex, noisy and everchanging world) is set, beyond any consideration
of detailed architecture, activation function, learning rule, etc., by the error rate.
Given that the key feature of neural computation is weight setting, and given the
enormous interest in the biophysical machinery of learning, it is surprising that
little attention has been paid to the possibility of error. It is generally assumed
(despite the volume learning results cited above) that there are no errors. If there
are no errors, then there is little incentive to consider possible mechanisms of error
reduction.
Interestingly, however, several features of central synapses appear to be speci5c

adaptations to reduce error. The main trigger for synaptic strengthening appears
to be a transient increase in subsynaptic calcium ion concentration caused by an
appropriate conjunction of a presynaptic spike (and local glutamate release) and a
backpropagating postsynaptic spike that expels magnesium from the NMDA type
of glutamate receptor [20]. If strengthening is to be speci5c to the conjointly active
synapse, this calcium signal must act extremely locally. This is achieved by placing
the synapse on the head of a protruding spine [19]. Further increases in speci5city
(and reductions in error rates) could be achieved by increasing synaptic separation,
lengthening spine necks, or enlarging synapses, but all these would impact synapse
numbers adversely, lower the grain of the weight adjustment process, and, most
importantly, increase connection sparsity. It seems likely that synapses operate close
to the limits of speci5city set by the biological materials available (membranes,
proteins, calcium ions, etc.).
If, as suggested above, the size and complexity of neural networks is set e<ec-

tively (in the real world) by the synaptic error rate, which is already at a ceiling
even in small networks like the hippocampus, how can large networks like the
neocortex operate successfully? The conventional viewpoint is that, in essence, the
neocortex is not a large network, but a very large collection of very small net-
works (perhaps as small as cortical columns), and that the connectivity between the
small networks is prespeci5ed genetically. For example, orientation selectivity could
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be coarsely prewired genetically, and merely 5nely adjusted by activity-dependent
mechanisms. One way to model this is to assume an “arbor function”, de5ning the
possible range of postsynaptic targets, for example of an incoming thalamic axon
[22,23]. Such prewiring, however, would greatly limit the 4exibility of neocortex.
Is it possible to lower the e<ective error rate without major, and likely unobtain-

able, improvements in the design of synapses? In the next section we show that
the e<ects of local learning errors depend on the relationship between the strength-
ening signal at a connection and at the neighbouring connections. This means that
a decrease in the e<ective error rate can be achieved virtually, without altering
synaptic hardware, by imposing suitable conditions on learning rates. In the most
natural interpretation of this hypothesis, it would be necessary to create special
neurons that measure the degree of correlation in the 5ring of two other neurons
relative to the correlation between nearby pairs of neurons. This represents a depar-
ture from the framework of neural computing, which postulates that neurons sum
activities, whereas synapses detect correlations. However, such correlation-sensitive
neurons are already known in the auditory system [3], and the required circuitry
corresponds quite well to that found in the neocortex. In Section 4 we sketch this
circuitry and draw out some of its unexpected consequences.
In summary, our meld of evolutionary and neural computing hinges on the ques-

tion of the anatomical speci5city of synaptic weight adjustment. Activity-dependent
connection strengthening, if it occurs digitally, amounts to synaptic replication, the
key ingredient of genetic algorithms. We believe that fruitful errors in synaptic
strengthening form the basis of new connections, much in the spirit of evolu-
tionary algorithms. From this perspective the key issue for the development of
sophisticated nervous systems becomes lowering that error rate, just as the adop-
tion of DNA=protein-based information engineering was the key step away from
the primitive RNA world. Although the information that produces neural learning
is extremely complex, at some point it must be reducible to elementary electrical
signals that in4uence biochemical events in real synapses, such as the coincident
occurrence of pre- and post-synaptic action potentials (perhaps combined with a
globally released “reward” neuromodulator). These signals could be harnessed to
achieve virtual decreases in the error rate, and large increases in the complexity of
neural systems.

3. A model of erroneous learning

Consider a presynaptic layer of neurons innervating a postsynaptic neuron layer
(Fig. 1). In a standard neural network, each presynaptic neuron would in4uence
each postsynaptic neuron by a variable synaptic weight, which would typically be
adjusted according to the conjoint activities of the contributing cells. We assume
that the weights are digitised, and that the number of synapses made by a given
presynaptic cell is constant. Neuron pairs that are linked by fewer than one synapse
are unconnected; they can only become connected as a result of “presynaptic mu-
tation” from neighbouring existing connections (sketched in the lower right part
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Fig. 1. A model for the formation of new synaptic connections. A layer of presynaptic cells can
connect to a layer of postsynaptic cells, but only the connections (and possible connections) formed
by one of these presynaptic cells are considered. In the top part, an existing connection, composed of
three synapses (solid), is shown. As a result of correlated or synchronous 5ring, an additional synapse
is created. This new synapse (open circle) can appear either on the postsynaptic component of the
connection (shown bottom left) or on a neighbour of that postsynaptic cell (left or right, but only the
latter shown here). Both the creation of new synapses and their misplacement occur stochastically,
the former with probability w, and the latter with probability E. The former but not the latter varies
across the array. The erroneous placement of new synapses is a form of heterosynaptic error and
is analogous to point mutation in DNA. The paper discusses the simple case where 5tness of one
possible connection (wm) is higher than that of surrounding possible connections (wp; see 5tness
pro5le sketched at the top of the 5gure).

of Fig. 1). Whenever activity-dependent strengthening of a connection occurs, the
resulting new synapses are placed on the co-active postsynaptic neuron with some
high probability (1 − E), and at neighbouring postsynaptic neurons with proba-
bility E. (Another possibility, shown in Fig. 5, is “postsynaptic mutation”, where
the erroneous new synapses originate from a neighbour of the active presynaptic
neuron; these possibilities correspond to the two experimental forms of “volume
learning” [13,6,26].) In both cases, it is envisaged that the errors arise from spatial
imperfections in the cascade of events leading to digital strengthening, such as
spread of calcium signals beyond the coactive synapses.
To analyse the consequences of this assumption, we simplify the actual patterns

of activity of the pre- and postsynaptic cells, from which stable, useful weights
eventually emerge, by postulating a “5tness”, w, which represents the time-averaged
rate of growth of a connection strength y (expressed as a fraction of the total
number of synapses formed). Thus in the simplest case where a linear postsynap-
tic neuron receives input from only one presynaptic neuron with activity V , the
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postsynaptic activity will be yV . If the connection growth is determined by the
product of the pre- and postsynaptic activities (a Hebbian rule), then dy=dt=yV 2,
and w=V 2. Adding the assumptions of constant total synapses and random mu-
tation, and representing the distance between the postsynaptic neurons as x, the
model becomes

@y=@t=(w − 〈w〉)y + 0:5wE@2y=@x2; (1)

where 〈w〉 represents the average 5tness (i.e., the integral of wy over x; the compar-
ison of 5tness with average 5tness ensures that synapses rearrange during learning
but total synaptic strength is conserved). If 5tness has a constant high level wm

for a small patch of n neurons, and a constant lower level wp over the remaining
neurons (as shown in Fig. 1), the predicted steady-state distribution of synapses
beyond the high-5tness region is exponential with a space constant � given by

(2�+ n)=n�2 = 2(wm=wp − 1)=E: (2)

Qualitatively, the growth of connections in the high-5tness region generates a mu-
tational 4ux of synapses across the 5tness transition into the lower 5tness region,
which in the steady state exactly compensates the death of synapses there. We
have veri5ed this prediction using computer simulations (see Fig. 1 in Ref. [9]).
In the limit of zero error rate, all the synapses form in the high-5tness region.
Eq. (1) represents a minimal model of Darwinian evolution (see Ref. [31]) while
Eq. (2) exhibits the trade o< between the sharpness with which neural correlations
are focussed (wm=wp) and the error rate E, expressed in terms of the smearing of
synaptic connections measured by �.
This model of the evolution of synaptic weights in the presence of a mutation-like

process of synapse misplacement is useful because it highlights the importance of
the spatial pro5le of neural activity, but it drastically oversimpli5es the actual
evolution that would occur either in an arti5cial neural network or a real brain.
We therefore also simulated a slightly more realistic model with a Hebbian learn-
ing rule incorporating a reward=penalty term [21]. The aim was to place all the
synapses on a central target neuron, by exploiting 4uctuations in the activities of
the postsynaptic neurons caused by stochastic synapse formation and death. The
steady-state distribution of synapses that resulted using various error rates is shown
in Fig. 2. As expected, the greater the error rate, the less tightly synapses clustered
on the target neuron.

4. Neocortical circuitry controlling presynaptic errors

There is considerable evidence that the tuning of cortical neurons to particular
input patterns re4ects the selective and precise innervation of that neuron either by
speci5c thalamic a<erents (for example in the case of spiny stellate cells in layer
4; [25]) or, in the case of layer 2, 3, and 5 pyramidal cells, also by speci5c up-
stream cortical neurons [4]. A famous example is orientation sensitivity in primary
visual cortex, which has been modelled extensively using Hebbian learning rules
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Fig. 2. Steady-state pro5le of synapses attained in a reward-based model. The central neuron (cell 7)
was designated as the target for all 1400 synapses made by a single presynaptic neuron. Epoch-to-epoch
4uctuations in the numbers of synapses at each connection, caused by stochastic replication and
mutation, led to variations in the locations of these synapses, and thus variations in 5ring rate. These
locations, compared to the target locations, determined a global “reward” or “penalty” which, together
with the sign and size of local 4uctuations in synapse number, set the per epoch probability that
a synapse replicates or dies. The following error rates were used: 0.1 (circles); 0.2 (squares); 0.3
(triangles).

[22,23,32]. In these models, the basic mechanism at work is that cell pairs whose
activity is relatively strongly correlated become selectively coupled, and weakly
correlated cells disconnect. However, the analysis presented above suggests that if
synaptic placement errors occur, the pattern of connections that develops in the
presence of correlated activity will be somewhat blurred, to an extent that depends
both on the error rate and the way the correlations vary spatially. If such blurring
is to be minimised, one obvious strategy is to lower the error rate. However, as dis-
cussed in Section 2, there may well be a biophysically irreducible error rate, which,
combined with the relatively weak correlations present in the real world, produces
unacceptably imprecise connectivity. Indeed, it is quite possible that unavoidable
synaptic errors could completely prevent the extraction of useful regularities from
confusing, ambiguous, or noisy data [10]. In such a situation it would be desirable
to suspend online learning until the data become more interpretable. What is really
required is a connection-by-connection decision as to whether or not ongoing neu-
ral activity (of both pre- and postsynaptic neurons) should be allowed to trigger
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weight changes. This decision, like the weight updating itself, should be online
and local.
The analysis summarised in Section 3, particularly Eq. (2), suggests a possible

solution to this dilemma. Suppose that there exists some degree of tolerable spread
of connections �c away from the ideal of precise connectivity. If this is inserted into
Eq. (2) then there exists a corresponding tolerable correlation sharpness (wm=wp)c
for any 5xed level of error. If the correlations across a connection (wm) are suf-
5ciently greater than the correlations between the neuron pairs corresponding to
incipient connections (wp), such that �c will not be exceeded, it would be safe
to allow that connection to be “plastic”—to learn. If new synapses are added to
that connection, then even if one of them is misplaced it will likely not survive
in competition with the original connection, because it is sustained only by rel-
atively weak correlations. On the other hand, if the relative correlation wm=wp is
dangerously small, then the existing connection should be kept implastic.
The thalamocortical circuitry required to implement this idea is shown in

Fig. 3, for the speci5c case of thalamic input (represented as layer J) to layer 4
(represented as layer I). There are two requirements. First, there has to be a layer
of cells that measures the correlations between thalamic relay cells and layer-4
cells. Fortunately, it is not necessary to measure all the possible correlations, but
only those between neurons which are currently connected (e.g., cell J0 to cell I0 in
Fig. 3) or could become connected by a one-step mutation (shown as dotted lines)
from a current connection (pairs J0–I−1 and J0–I1 in Fig. 3). The necessary connec-
tions to measure these correlations in the third, K layer (which would correspond
to cortical layer 6), are shown in Fig. 3. The K cells are shown using special sym-
bols, because they compute correlations, unlike the conventional neurons in layers
J and I (which compute standard weighted sums of their inputs). One plausible
biophysical mechanism, sketched in Fig. 3, is relative dendritic displacement of
excitation from J and I layer cells, such that a spike in a presynaptic cell triggers
an excitatory postsynaptic potential that peaks somatically at the same time as a
corresponding spike in a postsynaptic cell. The somatic excitations (which re4ect
correlations) are then ratioed in the spike output of the K cell that computes the
correlation across the existing connection, using divisive inhibition between the K
cells corresponding to the existing and incipient connections (shown as horizontal
arrows).
The second requirement is that the spike output of K0, which only occurs if �c

will not be exceeded, enables the plasticity of the existing connection. The most
convenient way to do this is to lead the output back to the thalamic relay cell
making the existing connection, where it makes a special type of “modulatory”
synapse (shown in Fig. 3 as a vertical arrow). These synapses should switch the
state of the presynaptic cell so that it emits specially labelled “plasticity-enabling”
spikes.
Although these requirements are rather stringent, and even bizarre, they happen

to correspond to the actual, rather puzzling, circuitry in thalamus and cortex [27,11].
For example, it is known that layer-6 cells (putative K cells) receive input both
from relay cells (J cells) and layer-4 cells (I cells). These inputs are individually
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Fig. 3. A proposed circuit for limiting presynaptic error. The top layer of cells (J) represents thalamic
relay cells, the middle layer (I) neocortical layer-4 “simple” cells, and the bottom layer (K) neocortical
layer-6 “simple”-type cells. J and I are standard connectionist cells computing weighted functions of
their inputs, while K cells compute a measure of the correlation in the 5ring of J and I cells, because
they are depolarised by synchronous J and I spikes. The speci5c case of a cell J0 that currently makes
a connection on cell I0 is shown (small 5lled circles). Strengthening of this connection (as a result
of correlated 5ring of J0 and I0) could make one-step mutant synapses (dotted lines and small open
circles) onto the 4anking cells I−1 or I1. To avoid these errors, cell K0, which is linked permanently
to I0 by a descending, proximally placed, connection, controls the plasticity of the connections formed
by J0 by means of a feedback connection (vertical arrow). This K cell 5res and enables plasticity only
when the correlation of J0 with I0 (wm) suFciently exceeds the correlation of J0 with I−1 and I1 (wp)
that mutant synapses will likely not survive. The horizontal gray arrows between K cells represent
lateral inhibitory interactions underlying the computation of correlation ratios. Note that in this scheme
there should be one more cell in a K sublayer than an I cell has neighbours (two in the case shown
here, but n in the real neocortex), and each of the m J cells requires its own K sublayer. These
additional sublayers are not shown, but altogether nm K cells are needed (far fewer than the m2 K
cells needed to compute all possible J–I correlations). Adapted from Fig. 2 in Ref. [9].

rather weak, and it is plausible that it is the conjunction of spikes in both inputs
that causes layer-6 cells to 5re. The layer-6 cells innervate the distal dendrites of
relay cells, where they activate metabotropic receptors that depolarise relay cells
and switch their 5ring mode from burst to tonic [27]. Essentially these modes
correspond to two di<erent types of action potential arriving at the intracortical
relay terminals, as required.
This proposed arrangement can be viewed as virtual error reduction circuitry.

Since synapses can only mutate if they learn, and can learn only if they support
relatively strong correlations, the resulting connectional blurring is minimised, in
the same way that would occur were there an actual reduction in the true error
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rate (see the equivalence of E and wp=(wm −wp) in Eq. (2). Of course this virtual
reduction in error rate comes at a cost—learning will occur more slowly overall
because it stops when correlation pro5les are blunt.
The essential feature of the scheme shown in Fig. 3 is that whatever causes the

strengthening of the existing connection (for example, conjoint spikes) should be
“carboncopied” (“ccd”) to the K cell that corresponds to the existing connection.
Likewise, whatever would cause strengthening of an incipient connection should
be “ccd” to the neighbours of that K cell. This feature lends the scheme surprising
robustness. It should not matter what the actual pattern of spikes across the con-
nected or nearly connected cells is (which will be some complicated consequence
of the detailed activity of the network). In a sense, all the extra circuitry asso-
ciated with the K cells is orthogonal to any traditional neural network device. It
exists merely to counteract the e<ects of errors in the synapses of the traditional
network, which are normally disregarded. In particular, in a biological realisation
of a neural network (of any type), errors can either be eliminated by improvements
in the biophysics of synapses, or by the virtual strategy of Fig. 3.
This robustness shows up in another even more important context. It is essential

to the plausibility of the scheme that only a few correlations (between currently
connected cells and cells contributing to incipient connections) need be measured.
However, although the scheme of Fig. 3 would reduce errors in the strengthening
of an existing connection, it would not eliminate them entirely. If a synaptic mu-
tation occurs, and, despite relatively unfavourable correlation ratios, survives, the
newly formed connection could strengthen at the expense of the original connection
(especially if the activity of the network itself changes, for example as a result of
new experiences or tasks). Under these circumstances, which we might describe
as an allegiance transfer, the existing K-cell circuitry becomes inappropriate and
must be updated. As we have described previously (Fig. 3 in Ref. [9]), certain
connections must be broken and others made so that the K cell corresponding to
the I cell which is the new recipient of the J cell’s synapses takes over the role
of controlling the plasticity of that J cell. This K-cell rewiring can be achieved
quite simply by taking the whole network oTine and playing suitable calibration
signals into it. Note that this must be done whether or not online strengthening,
mutation, or allegiance shift has occurred, since it is not possible to decide if there
has been an error (if there were, the error could be corrected). During the oTine
recalibration, the J–I connections (where online learning occurs) are rendered im-
plastic, while the J–K connections, and then the K–J connections, become plastic.
The I–K connections, which de5ne the K “partners” of I cells, are 5xed. The es-
sential principle is that errors in the oTine strengthening of these plastic synapses
identify the correct neighbourhood relations. Thus, in Fig. 3, the “neighbourhood”
of a cell is merely the two 4anking cells, but in the cortex “neighbourhood” is
taken to mean precisely those cells onto which a one-step synaptic mutation can
occur. It is because oTine K cell rewiring occurs by the very process (mutation)
which, in the J–I connections, the K cell circuitry curbs, that it is not necessary to
de5ne precisely “neighbourhood”. All that is required is that the same de5nition of
neighbourhood is used consistently for each set of connections, just as previously
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we saw that the precise signals that trigger strengthening do not matter, as long
as they are also “ccd” to K cells. Intriguingly, the oTine calibration signals that
must be supplied to rewire the J–K and K–J connections respectively correspond
closely to the actual patterns that occur in slow wave and paradoxical sleep [29].
Fig. 3 implies that a J cell makes, and an I cell only receives, one connection,

whereas in reality there are multiple connections. Neveretheless, the same principles
apply. Thus if J0 innervates a group of I cells (as a result of a relatively high degree
of past correlation with the 5ring of all those I cells), the K cells corresponding to
each I cell should feedback onto J0, combining their plasticity-enhancing e<ects. If
an I cell is innervated by a group of J cells, then its corresponding K cell should
feedback onto all those J cells. Speci5cally, in the case of a “simple” spiny stellate
cell in layer 4 of striate cortex that receives input from a set of thalamic relay cells
that in turn receive input from a set of retinal ganglion cells that are excited by an
oriented bar, the layer-6 cell “belonging” to that spiny stellate cell (i.e., receiving
a 5xed, vertically descending connection from the layer-4 cell above it) should
feedback to that set of relay cells, as shown in Fig. 4. There is some evidence that
this is indeed the case [28]. All these connections can be made automatically by
the oTine recalibration process.

5. Neocortical circuitry controlling postsynaptic errors

If strengthening is initiated postsynaptically, as appears to be the case in pyra-
midal cells, then it is likely that mutations will occur instead as sketched in Fig. 5
(dotted lines and open synapses)—from neighbours of the presynaptic cell making
the connections. Of course, the actual proximity relation involved is one of anatom-
ical closeness of other presynaptic terminal arbors, rather than of cell bodies, but
as noted above the de5nition of “neighbourhood” does not matter, as long as it is
applied consistently. Postsynaptic errors could arise if spine head calcium signals
spread into the dendritic shaft. Rather di<erent K-cell arrangements are needed
to handle postsynaptic errors, as sketched in Fig. 5, but the principles outlined
above are again involved. The main point is that now plasticity must be controlled
postsynaptically, which is somewhat easier to implement than presynaptic plasticity
control. One possibility is via metabotropic receptors at the “drumstick” neuromod-
ulatory synapses that layer 6 forms on the dendritic shafts of overlying spiny cells
[11]. Another possibility is that the relevent K cells feedback to a separate popula-
tion of relay cells (perhaps the “matrix” cells [18]) that in turn innervate the apical
tufts of cortical pyramidal cells, where they would facilitate spike backpropagation.

6. Discussion

In this paper we focus on two aspects of the biological implementation of neural
networks that have received rather little attention. First, although cortical networks
may be very large (billions of neurons), the total number of synapses that a neu-
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Fig. 4. A more realistic version of Fig. 3, based on the lateral geniculate nucleus (T) projection to
striate cortex (4, 6). In this 5gure the J cells are shown explicitly as thalamic relay cells (T), the I cells
as cortical layer-4 cells, and the K cells as cortical layer 6. The corticothalamic feedback connections
(arrows) terminate on the distal dendrites of relay cells, where they can activate metabotropic glutamate
receptors, which depolarise relay cells and shift them from burst (“implastic”) to tonic (“plastic”)
mode. Several relay cells converge on a given layer-4 cell, in this case three relay cells responding to
a bar of light or darkness on retina innervating a single “simple” layer-4 cell. This simple cell in turn
innervates, via a 5xed connection, the soma of its corresponding layer-6 partner, which also receives,
on its distal apical dendrite, input from branches of the relay cell axons that innervate the layer-4
simple cell. For simplicity the extended electrotonic structure of layer-6 cells, sketched in Figs. 3 and
5, is not shown here. The layer-6 cell would, by virtue of either of these two types of input, itself be
simple. (Complex layer 6-cells also occur, but these would correspond to the K cells shown in Fig.
5.) Note that the activation of the layer-6 cells would depend, in this scheme, on the conjunction of
action potentials in its input cells. The 5ring of the central layer-6 cell then depends on a comparison
of its own activation with those of its neighbours (shown as dotted circles), which receive their
proximal inputs from the neighbours of the layer-4 cell (also shown dotted). Note also that the central
layer-6 cell feeds back to all the thalamic relay cells that innervate its layer-4 partner. Although
these postulated connections and properties are consistent with the known anatomy and physiology
of thalamic and cortical cells, they go slightly beyond it. However, the circuitry shown here, and in
Figs. 3 and 5, can easily be established by two types of oTine calibration signals (traveling bursts or
random single spikes) applied in alternation while either the T-6 or 6-T connections are selectively
plastic.
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Fig. 5. Circuitry for limiting the spread of postsynaptic mutations. This should be compared with
Fig. 3. In this case, possible errors in the strengthening of the existing J0–I0 connection (dotted
lines, small open circles) occur postsynaptically, and are shown as originating from neighbours of J0.
However, in reality the “neighbourhood” would be the set of presynaptic terminal branches of relay
cells that are in the vicinity of the terminal branches making the existing connection (onto which the
postsynaptically initiated formation of new synapses might occur), and collaterals of these branches
innervate the neighbours of K0. In this case the plasticity of the J0–I0 connection should be regulated
postsynaptically (for example, by regulating dendritic spike backpropagation), shown as a solid arrow
from K0 to I0. Note that in principle a mutation can still occur, resulting for example in the formation
of the incipient connection J1–I0. If this happens, cell K1 should now be included in the high-5tness
zone contributing to wm. This requires that the sign of the lateral interaction between K0 and K1 be
4ipped, during oTine calibration, and K2 be recruited to measure wp. However, subsequent competition
between the J0–I0 and J1–I0 connections could eliminate the former, resulting in an allegiance shift
(and re4ipping of the sign of the K0–K1 lateral interaction). OTine calibration and rewiring would
occur throughout this process (in alternation with online learning at J–I connections), and the K cells
always operate correctly. The heavy dependence of continual K cell rewiring on oTine recalibration
(sleep) is an annoying consequence of the impossibility of computing the complete m2 correlation
matrix, but it is biologically the most interesting feature of the model.

ron makes or receives is rather small (thousands), so connectivity is very sparse.
Traditionally, it is supposed that the appropriate sparse connectivity is genetically
prewired, so that the power of a neural network results from a combination of
separate “neural” and “evolutionary” algorithms. Second, we explicitly allow for
spatial errors (“mutations”) in the strengthening of synapses, rather than the tra-
ditional assumption of error-free weight adjustment. We believe that such errors
are inevitable in highly compressed and compact neuropil. Such synaptic mutations
could provide a solution to the problem posed by sparse connectivity, and the result
would be a true hybrid of neural and evolutionary computing. However, synaptic
mutations do not provide a free lunch—they inevitably result in a network that
has lower performance than an error-free network. The extent to which this is so
depends on the details of the task and the world in which it is being accomplished,
and the challenge is to 5nd a simple, general, robust, and biologically plausible
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way of setting the trade-o<. We suggest a twofold strategy. First, the true error rate
should be lowered as far as possible, by improvements in the biophysical design
of synapses (such as the development of spines). Second, since this error rate can-
not be made zero (since otherwise synapses would be unreasonably large and far
apart), the e<ect of the errors should be taken into account by allowing learning
only when it is likely that erroneous synapses will not persist. “Learning” here
has to be interpreted as the biophysical changes that occur at individual synapses,
most likely as a result of coincident 5ring of pre- and postsynaptic neurons, which
means that one must explicitly consider the correlations in the 5ring of neurons
that could become linked by synapses as a result of errors in the strengthening of
existing connections. Fortunately, because as noted above connections are sparse,
this strategy is feasible. (In a less sparsely connected network it would be less
feasible, but then it would be less necessary.)
What about the alternative, traditional, hypothesis, that wiring is largely speci5ed

genetically, with weight adjustment and synapse elimination taking place within
a 5xed framework? There is recent strong evidence that precise prewiring does
indeed take place, in the olfactory system. Olfactory sensory neurons that express
the same odorant receptor converge on the same glomerulus in the olfactory bulb,
probably because each glomerulus carried a unique recognition marker for that
odorant receptor [33]. This mechanism precisely wires up a thousand glomeruli to
far more olfactory neurons, but the genetic cost of such speci5city is very high—a
considerable fraction of the entire genome is involved. A similar strategy employed
in striate cortex alone would eat up the rest of the genome. In neocortex, all the
evidence suggests that biochemical markers are involved in the speci5cation of
the laminar source or destination of innervation, not with intralaminar speci5city.
Extensive prewiring would also greatly reduce the 4exibility of cortex as a general
learning machine.
The conventional view that wiring is genetically speci5ed is sometimes supple-

mented with the idea of local sprouting—random formation of new connections
in the vicinity of new connections, at some basal sprouting rate s. If the fate of
the new connections is determined by the relative strength of correlations across
the various connections, in a competitive manner, then a modi5ed version of Eq.
(1) above would result, with the term wE replaced by s. Connectional blurring
would then depend on the di<erence, not the ratio, of wm and wp. The thalam-
ocortical circuitry sketched in Figs. 3 and 5 would still work, with the proviso
that the plasticity-control signals would be determined by this di<erence, rather
than the ratio, by a simple modi5cation of the lateral interactions between K cells.
However, because plasticity control would now be sensitive to the absolute levels
of correlations, rather than just a ratio, this would essentially be equivalent to the
original scheme, since sprouting from an existing connection would now occur at a
rate proportional to correlation strength across that connection. If synaptic sprout-
ing occurs at a rate proportional to the degree of correlation across synapses, it
becomes mathematically identical to synaptic mutation.
Synaptic strengthening presumably takes place in two steps: “functional” and

“structural”. The ultimate reason for this is that any functional change (such as
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insertion of additional postsynaptic receptors) can only be limited in extent (for
example, additional receptors will be useless if they greatly exceed the amount of
transmitter released). Thus if connection strengthening is to have a wide dynamic
range, at some point new synapses must be constructed (or, at the least, a set of
functional changes must be wrought that would be tantamount to synapse con-
struction). However, functional change could precede or follow structural change.
The former could occur if, following the initial insertion of a “quantum” of new
AMPA receptors into the spine head membrane, a process of synaptic splitting en-
sues [7,16,30]. The latter would correspond to the formation of an initially “silent”
synapse that then became “AMPi5ed” [17]. How does the brain know where to
form silent synapses? One possibility is that they are formed in the vicinity of
existing synapses. If silent synapses occasionally form between unconnected neu-
rons, they would constitute “mutations”. Whatever the precise mechanism, there is
strong experimental support for anatomical imprecision of long-term potentiation
[13,6,26].
The idea of restricting plasticity to strongly correlated neurons, on a moment-to-

moment basis (that is, on the time scale with which the correlations themselves wax
and wane, which is comparable to the open time of the NMDA receptor), is simple
and powerful (since it potentially solves the general “stability–plasticity dilemma”
[8] using a purely local rule), and requires rather straightforward circuitry. This cir-
cuitry, though straightforward, is rather unorthodox, since it requires a special type
of “correlation-detection” neuron, as well as a special type of neuromodulation,
“plasticity-control”. However, neither of these features is biologically implausible,
and both “correlation-detection” and “plasticity-control” functions have been de-
scribed in other parts of the brain [1,3].
The strongest evidence that the neocortex embodies the principles discussed here

comes from the remarkable agreement between the postulated and real structure
and physiology. The peculiarities of the model are complemented by neocortex’s
most enigmatic features. These oddities are part structural and part functional. The
most striking, universal, feature of neocortex is that it is uniquely supplied by an
apparently useless organ, the thalamus, to which it sends back far more axons than
it receives. We say “useless” because there is little evidence that thalamus serves
much more than a simple “relay” function, which could be performed far better
with less (or no) circuitry. The most striking, and unexplained, physiological feature
of relay cells is their dual spiking mode. Thalamus and cortex together engage in
an elaborately choreographed and completely mysterious oTine ballet called sleep,
whose steps and dancers are largely known [29], but whose plot remains totally
obscure. All these oddities mesh with the view that the main task of neocortex is
the eFcient regulation and exploitation of anatomical error.
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